Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Iwata, Satoru; Kakimura, Naonori (Ed.)In a regular PCP the verifier queries each proof symbol in the same number of tests. This number is called the degree of the proof, and it is at least 1/(sq) where s is the soundness error and q is the number of queries. It is incredibly useful to have regularity and reduced degree in PCP. There is an expander-based transformation by Papadimitriou and Yannakakis that transforms any PCP with a constant number of queries and constant soundness error to a regular PCP with constant degree. There are also transformations for low error projection and unique PCPs. Other PCPs are constructed especially to be regular. In this work we show how to regularize and reduce degree of PCPs with a possibly large number of queries and low soundness error. As an application, we prove NP-hardness of an unweighted variant of the collective minimum monotone satisfying assignment problem, which was introduced by Hirahara (FOCS'22) to prove NP-hardness of MCSP^* (the partial function variant of the Minimum Circuit Size Problem) under randomized reductions. We present a simplified proof and sufficient conditions under which MCSP^* is NP-hard under the standard notion of reduction: MCSP^* is NP-hard under deterministic polynomial-time many-one reductions if there exists a function in E that satisfies certain direct sum properties.more » « less
- 
            Iwata, Satoru; Kakimura, Naonori (Ed.)Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line 𝓁. We present an m^{2/3} n^{2/3} 2^O(log^*(m+n)) + O((n+m)log(n+m)) time algorithm for the problem. This improves the previously best result of O(nm + n log n) time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of S are located on a line 𝓁 while points of P can be anywhere in the plane. Our algorithm runs in O(m√n + (n+m)log(n+m)) time, which improves the previously best result of O(nm log(m+n)) time. In addition, our results lead to an algorithm of n^{10/3} 2^O(log^*n) time for a half-plane coverage problem (given n half-planes and n points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of O(n⁴log n) time. Further, if all half-planes are lower ones, our algorithm runs in n^{4/3} 2^O(log^*n) time while the previously best algorithm takes O(n²log n) time.more » « less
- 
            Iwata, Satoru; Kakimura, Naonori (Ed.)We give a new rapid mixing result for a natural random walk on the independent sets of a graph G. We show that when G has bounded treewidth, this random walk - known as the Glauber dynamics for the hardcore model - mixes rapidly for all fixed values of the standard parameter λ > 0, giving a simple alternative to existing sampling algorithms for these structures. We also show rapid mixing for analogous Markov chains on dominating sets, b-edge covers, b-matchings, maximal independent sets, and maximal b-matchings. (For b-matchings, maximal independent sets, and maximal b-matchings we also require bounded degree.) Our results imply simpler alternatives to known algorithms for the sampling and approximate counting problems in these graphs. We prove our results by applying a divide-and-conquer framework we developed in a previous paper, as an alternative to the projection-restriction technique introduced by Jerrum, Son, Tetali, and Vigoda. We extend this prior framework to handle chains for which the application of that framework is not straightforward, strengthening existing results by Dyer, Goldberg, and Jerrum and by Heinrich for the Glauber dynamics on q-colorings of graphs of bounded treewidth and bounded degree.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
